
www.manaraa.com

Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Spring 2016 

Care-Chair: Opportunistic health assessment with smart sensing Care-Chair: Opportunistic health assessment with smart sensing 

on chair backrest on chair backrest 

Rakesh Kumar 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Sciences Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Kumar, Rakesh, "Care-Chair: Opportunistic health assessment with smart sensing on chair backrest" 
(2016). Masters Theses. 7511. 
https://scholarsmine.mst.edu/masters_theses/7511 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7511?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


www.manaraa.com

CARE-CHAIR: OPPORTUNISTIC HEALTH ASSESSMENT WITH SMART

SENSING ON CHAIR BACKREST

by

RAKESH KUMAR

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2016

Approved by

Dr. Sajal K. Das, Advisor

Dr. Dan Lin

Dr. Wei Jiang



www.manaraa.com

Copyright 2016

RAKESH KUMAR

All Rights Reserved



www.manaraa.com

iii

ABSTRACT

A vast majority of the population spend most of their time in a sedentary

position, which potentially makes a chair a huge source of information about a per-

son's daily activity. This information, which often gets ignored, can reveal important

health data but the overhead and the time consumption needed to track the daily

activity of a person is a major hurdle. Considering this, a simple and cost-efficient

sensory system, named Care-Chair, with four square force sensitive resistors on the

backrest of a chair has been designed to collect the activity details and breathing rate

of the users. The Care-Chair system is considered as an opportunistic environmental

sensor that can track each and every activity of its occupant without any human

intervention. It is specifically designed and tested for elderly people and people with

sedentary job. The system was tested using 5 users data for the sedentary activ-

ity classification and it successfully classified 18 activities in laboratory environment

with 86% accuracy. In an another experiment of breathing rate detection with 19

users data, the Care-Chair produced precise results with slight variance with ground

truth breathing rate. The Care-Chair yields contextually good results when tested in

uncontrolled environment with single user data collected during 8 hours of study.
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1. INTRODUCTION

Good health is the greatest asset to any individual. The definition for good

health varies from person to person based on their gender, age, physical ability, en-

vironmental conditions, occupation and lifestyle. The parameters for the physical

or mental fitness of a person involved in sports, the Army or other such activities

are viewed differently than for a person primarily involved in less physically active

occupations like computer professionals, teachers or office employees. Similarly, the

health conditions of elderly people or the physically challenged are evaluated and

monitored differently than comparatively younger, energetic and fit people. In gen-

eral, there are four vital health signs used to evaluate the medical conditions of a

person. These are body temperature, pulse rate, respiration rate and blood pressure.

Doctors advice keeping track of these vital health signs regularly and periodically

to maintain a healthy body. Very few seriously follow this instruction. More often,

the majority of population uses their busy schedule as an excuse. The other major

factors for negligence towards basic health care are ignorance, lack of knowledge of

consequences, laziness, lack of proper resources and even deliberate avoidance. A

very small part of the population, those who are either extremely health conscious or

those already suffering from health related problems, visit health centers for regular

checkups. Considering all of the major hurdles causing an individual to be reluctant

to basic health care monitoring, many companies have come up with wearable health

care devices that can record and keep track of vital health signs. This was a big

revolution in health care by providing users with the ability to monitor their health

independently and continuously despite their busy schedule. The wearable devices

like Fitbit, smart watches and ECG (Electrocardiogram) are a few of them.



www.manaraa.com

2

But as we know that nothing comes for free, these wearable devices have certain

limitations. All of these devices operate on battery. The batteries are rechargeable but

they consume considerably more energy than usual due to their high processing power.

The limited energy storage capacity of batteries limits the use of these wearable

devices and ends up annoying users to recharge them more frequently. Moreover, the

size and overhead to wear it all the time demotivates fashion-loving people to use it.

Since these devices are sophisticated as well as expensive, they are not widely accepted

by the economically under-privileged, elderly and less technology savvy population.

Furthermore, sometimes the user forgets to remove the device during activities like

bathing, washing dishes, and other activities involving water. This may cause damage

to the circuit of the device and collapse its functionality. Even if the devices are

removed as a precaution to avoid the damage, the users generally forget to wear it

again later on. Interestingly, in some cases people consider using these devices as

a privacy breach and security threat. For example, ECG (Electrocardiogram) on a

person's body reveals that the person has some heart related issues. Knowing this

an attacker with malicious intent could easily target that person. Any activity or

incident that can bring sudden excitement can drastically increase the heart beat,

which is life-threatening for heart patients.

The limitations and drawbacks of wearable healthcare devices promote the

requirement of environmental sensors or devices that can opportunistically collect the

health-related information without any human intervention and effort. Environmental

devices can also be called ”implicit sensors”. The concept of implicit sensors or devices

utilizes a few selected materials or objects present in a person's surrounding that are in

frequent interaction with a him or her during daily activities. Such materials might be

a bed, personal computers, chair, clothes, etc. The primitive selection of such objects

depends on certain criteria like the amount of time an individual spends with it, the

way that object is being used, acceptance rate of the object from the majority of
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the population, and the mode of utilization of the object, i.e. personalized or shared

among multiple users. The interaction time with the objects chosen for implicit

sensing is important, as the more time a person spends with the object, the better

the quality and quantity of health information will be. Furthermore, it is extremely

important to observe the way an object interacts with a person in order to determine

its usability.

1.1. MOTIVATION

Most of the people spend a major portion of their daily working time in seden-

tary position. Moreover, the chair is ubiquitous and widely used in offices, schools,

hospitals and home. In a chair usage study performed with 50 users in [10], 55% of

users spent more than 9 hours a day in sitting position and 20% of users spent more

than 14 hours. Also, 91% of users claimed to have a primary chair, and 61% of users

were the only occupant of their primary chair. Most importantly, the fact that 67%

of users frequently use the backrest of their chair motivated the use of a chair as the

system design for an environmental sensor.
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2. RELATED WORK

There are many of existing works that explore coverting various objects that

surround humans into environmental sensors that can opportunistically collect data

without any human intervention. These objects can be items like clothes, furniture,

parts of automobiles (like a steering wheel or seat), computer keyboards, etc. Because

the discussion is related to using the chair as an environmental sesnors, this section

contains a review of the existing literature on this subject.

2.1. STATIC POSTURE DETECTION WITH CHAIR

Tan et al. [22] used commercially-available pressure distribution sensors de-

veloped by Tekscan [1], which were mounted on the seat and backrest of a regular

office chair to sense and understand the occupant’s activities and needs. A principal

components analysis (PCA) based algorithm has been developed for real time static

posture classification. This algorithm attained a classification accuracy of 96% when

training and testing datasets were from familiar users, whereas a 79% classification

accuracy was attained when different user datasets were used for the training and

testing. The 14 different sitting postures that were classified are: (1) seated upright,

(2) leaning forward, (3) leaning left, (4) leaning right, (5) right leg crossed (with knees

touching), (6) right leg crossed (with right foot on left knee), (7) left leg crossed (with

knees touching), (8) left leg crossed (with left foot on right knee), (9) left foot on seat-

pan under right thigh, (10) right foot on seatpan under left thigh, (11) leaning left

with right leg crossed, (12) leaning right with left leg crossed, (13) leaning back, and

(14) slouching.

Like the commonly used Tekscan pressure mats, Meyer et al. [16] designed

their own textile pressure sensor array that can measure the pressure distribution
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while sitting.The textile sensor was consisted of 240 sensor elements. Due to the

large number of sensing points it was difficult to fit the textile over the seat area

of the chair. Hence, the textile was folded in layers, and each layer was separated

with non-conductive textile to insulate the two conductive layers. Wires from each

layer were connected to the electrodes. Commercially available Tekscan pressure mats

were also placed on the seat, in addition to the textile sensors,to validate the pressure

distribution detection by the textile sensors. The Naive Bayes classifier was applied

to identify 16 different sitting postures on the chair: (1) seated upright, (2) leaning

right, (3) left, (4) forward, (5) back, (6) left leg crossed over the right, (7) right over

left, (8) once seated upright, and (9) once leaning back, (10)-(13) once while the

knees are touching and once with the ankle rested on the leg, (14) slouching, (15)

sitting on the leading edge and (16) slouched down. Among the other works, Mutlu

et al. [18] used 19 square pressure sensors at different calculated locations on the

seat and backrest of the chair. They used values for a total of 30 features from the

training dataset and then trained the classifier based in logistic regression to classify

10 various sitting positions: left leg crossed, right leg crossed with leaning left, leaning

back, leaning forward, leaning left, leaning right, left leg crossed with leaning right,

seated upright, right leg crossed, slouching.

Fu et al. [9] developed an intelligent chair capable of predicting the subsequent

sitting activity of the occupant based on his or her classified sitting posture.A total

of 8 force sensing resistors (FSR) were placed on the backrest and seat of the chair

and a Raspberry Pi board was used as the middleware for the IntelliChair system.

The major tasks performed by the Raspberry Pi board included collecting raw data

from the pressure sensors, processing data, classifying postures, and recognizing and

predicting activity. Based on the experiments conducted with different classification

algorithms, they found the decision tree as the best classifier for ItelliChair. The

static activities that were detected include back postures (body leaning right, leaning
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back, body leaning left and no contact) and leg postures (sitting upright, crossing

right leg on left leg, crossing left leg on right leg, sitting forward and no contact).

Similarly, ExerSeat [6] tracks the occupants sitting posture and suggests appro-

priate exercises to prevent health problems from prolonged sitting at the workplace.

Using 8 capacitive proximity sensors mounted on the seat and backrest of the chair,

ExcerSeat supports posture recognition for five different exercises: (1) back bend

(moving the torso region left and right), (2) back up (touching the feet with a fixed

sitting position by lowering the upper body to the legs), (3) bicycles (sequentially

raising the left and right leg from the chair), (4) squat (standing up from the chair

and sitting back down with arms stretched to the front), (5) sit up (sitting upright

on the front of the seat, lowering straight back to the backrest, and coming back

up).The pressure array mat from Tekscan was also used in [23] to find static postures

of users using an unsupervised machine learning method.The unsupervised classifi-

cation mostly generated 16 distinguishable static sitting postures for the users under

the experimental setup. A total of 16 postures were recorded during the posture

experiment: (1) sitting upright, default posture, (2) leaning left, (3) leaning right,

(4) leaning back, (5) leaning front, (6) left legover right, knees touching, upright, (7)

right leg over left, knees touching, upright, (8) left leg over right, knees touching,

leaning back, (9) right leg over left , knees touching, leaning back, (10) sitting on

leading edge, (11) lying, (12) slouching, (13) left leg over right, foot on knee, upright,

(14) right leg over left, foot on knee, upright, (15) left leg over right, foot on knee,

leaning back, (16) right leg over left, foot on knee, leaning back.

2.2. USER ACTIVITY DETECTION WITH CHAIR

The work in [7] by Cheng et al.placed simple pressure sensors under the leg of

the chair to extract 7 different sitting postures along with the occupant’s hand and

head movement during activities like typing and nodding. In the experiments with
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5 user datasets, the authors achieved a classification accuracy of 82.6% for 7 sitting

postures: (1) sitting straight, leaning (2) left / (3) right / (4) forward / (5) backward,

(6) raising one hand and (7) crossing one leg over the other knee). In addition, they

conducted experiments with 5 users to show that the subtle actions related to arm,

hand and head motions produce certain signatures which are detectable using the

pressure sensors. Using the hand and head movements, they recognized the following

5 activities with 88% accuracy: (1) typing on a keyboard, (2) clicking a mouse, (3)

nodding, (4) clapping hands, and (5) sitting still.

Another work on the GRiT chair alarm [14] used pressure sensors to detect

the occupant’s (patient in this case) gesture, and then probabilistically determined

the likelihood of the body collapsing and generated an alarm to notify caretakers.

But the work also uses 7 capacitance sensors placed at the various heights along the

chair’s backrest to measure the distance between the backrest and the patient’s back.

In addition to that, 12 pressure sensors were located on the seat and the armrest of

the chair to determine the occupants contact position and weight distribution. Inter-

estingly, the chair generated an alarm when it detected the occupant falling to convey

the information to the caretaker via WiFi networks. In another category of work, the

authors in [20] proposed an acoustic-based head orientation estimation method using

a microphone array mounted on a chair. Another work in [21] develop a noise robust

speech recognition system for a voice-driven wheelchair with a microphone array unit

integrated on the chair. The SenseChair work theat was conducted by Forlizzi et. al.

[8] explored the various possible ways an elderly person can interact with his or her

personalized chair and tried to provide an assisted living environment so that users

can stay independently in their homes. The seat of the SenseChair was covered with

a smart fabric cover with pressure sensors sewn on it. There were 6 pressure points

with a configuration of 4 sensors at 4 corners of the seat and 2 sensors on the middle.

In addition, SenseChair used 8 halogen lamps arranged in a circular fashion beneath
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the seat of the chair and 18 vibration motors distributed on seat cushion and back

cushion of the chair. All these configuration in the SenseChair were used to create

different kinds of alerts and signals to assist the user based on his or her requirement.

2.3. STRESS AND ATTENTION DETECTION WITH CHAIR

The pressure distribution sensors by Tekscan were also used by Arnrich et

al. [3] to determine the stress level of the chair's occupant based on movement

signatures. In the study the users were first asked to perform certain activities under

given conditions, making the task stressful. Then, they were asked to perform the

same tasks freely without any such conditions. The proposed method was used to

extract features derived from the spectra of norm of the center of pressure (CoP).

The features were extracted for each user during both forms of study: the stressful

condition and the control condition. The stressful condition consisted of performing

mental arithmetic problems under the pressure of a time constraint and a social-

evaluative threat. The control condition consisted of performing mental arithmetic

with the absence of both time pressure and social evaluation, which is similar to

working normally on a computer. The proposed method utilized self-organizing map

(SOM) based classifiers and a XY-fused Kohonen network to handle different patterns

of the subject's stress responses and determine the stress levels of the occupants.

The pressure sensor array by Tekscan was also used in the work [13] for posture

detection of a sitting user. The goal was to classify interest and disinterest in children

who were solving an educational puzzle on the computer. However the proposed

system uses multiple sensor modalities with facial image recognition, postures, and

task information. The pressure sensor array is used only for detecting some postures

(such as sitting upright and leaning back) and assessing activity level (low, medium

and high). Another work by Mota et al. [17] studied the sitting postures and their

patterns again to detect the interest level of children in a learning environment. The
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sequence or patterns of sitting postures was determined using a set of independent

hidden Markov models, which can categorize the child’s interest into three levels of

high, medium and low.

2.4. BODY VITALS DETECTION WITH CHAIR

Bolstering the works on measuring the vital health signs like heart rate through

a ballistocardiography (BCG) technique, Junnila et al. [12], [11] used an EMFi-film

sensor installed on the seat of the chair. They have used a blind segmentation method

to filter out the BCG cycle from other dominant interferences like body movement,

respiration and electrical noise. The work in [4] uses the chair back with a capacitance-

coupled sensing method to measure biological signals like electrocardiogram (ECG),

photoplethysmogram (PPG) and ballistocardiogram (BCG) and promotes the chair

as a non-intrusive sensor [15] for measuring vital health signs. Postolache et al. [19]

used the backrest and seat of a chair to monitor heart rate and respiration rate. They

mounted the EMFi (electromechanical film) sensors on the chair and then performed

Wavelet based data processing on the obtained ballistocardiographic (BCG) signals

from human subjects. Eight capacitive proximity sensors were installed at different

locations on the capacitive chair [5] to detect respiratory rate, body posture and

activities. Ford's research lab [2] is developing a sensor that can be embedded on

the backrest of a car seat in order to monitor the driver’s heart rate without any

contact with the skin. Griffiths et al. [10] placed the pressure sensors on the backrest

of the chair and an EKG sensing element on the armrest. Using an autocorrelation

method on the obtained pressure data, they calculated the breathing rate of the chair

occupant. Similarly, using another R-peak detection method they calculated the heart

rate of the occupant from the EKG signal.
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3. CARE-CHAIR SETUP DESCRIPTION

Care-Chair is basically a simple regular chair (Figure 3.1) with backrest em-

bedded with just 4 square Force Sensitive Resistors (FSR). FSR is a low cost sensor

having sensing area of 1.75x1.75”. Basically the function of these FSR is to detect

any physical pressure or weight applied over them. The resistance of FSR varies upon

the pressure applied on the sensing area. Stronger the force, the lower will the resis-

tance. Hence we get the analog readings of the current passing through them when

different pressures experienced by their sensing area. Although these sensors are not

accurate in terms of readings but the Care-Chair only requires the relative changes in

the amount of the pressure or force applied rather than the accuracy of the measure

of the pressure or the force applied. Considering all these properties,each of the 4

sensors were placed at the well calculated locations on the backrest of the chair. The

selected locations were determined and finalized after multiple testing with different

users of different height and volume. The whole purpose behind the proper placement

of the FSR was to make sure that all the four sensors must be in proper contact with

the occupant so that the quality of data received must be good.

In order to receive the readings of pressure data from the FSR and collect it in

digital form, Arduino or RFduino can be used. But considering the advantages of RF-

duino over Arduino like comparatively smaller size, wireless enabled microcontroller

with BLE communication capability and low cost has made RFduino qualified as an

ideal fit for Care-Chair. RFduino development kit consists of two boards (Figure 3.2),

one is DIP mainboard and another is the USB shield. The USB shield combined with

the DIP mainboard gets connected to the computer via USB cable or directly to the

USB port and the required code from the Arduino IDE is loaded to the mainboard. In

general RFduino is a Bluetooth 4.0 Low Energy module. CR2032 Lithium metal 3V
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Figure 3.1. Care-Chair Force Sensitive Resistor placement on the backrest of chair

Figure 3.2. RFduino Platform used in the experiment
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250mAh button cell battery (Figure 3.2) is used as the power supply for RFduino to

operate and send data to the paired device using a cable or even wirelessly via Blue-

tooth low energy. Based on the experimental study it has been observed that using

this Lithium metal 3V 250mAh button cell battery, the RFduino on the Care-Chair

can operate continuously around 8 hours before running out of power. In Care-Chair,

the RFduino sensor platform was kept in a small case and placed behind the backrest

of the chair. All the 4 FSR are connected to the RFduino using thin wires (Figure

3.3).

Figure 3.3. RFduino placed behind the backrest of Care-Chair

Another RFduino was connected to the computer (Figure 3.4) which can com-

municate with the RFduino connected to the Care-Chair using gazelle wireless pro-

tocol. In Gazelle protocol a host RFduino is allowed to communicate with 8 other

devices in star topology. The device always initiates the communication and the data

packets sent by the devices must be acknowledged by the host. It follows two-way

communication protocol between the host and the participating devices. In the case

of Care-Chair, the host RFduino is the one connected to the computer and com-

municating with the device RFduino connected to the chair. To note that there are

different and separate codes installed on the host RFduino and device RFduino which
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Figure 3.4. RFduino device connected to computer for receiving data from the slave
RFduino in the chair

are meant to perform different task. The device RFduino was programmed to collect

the data from the 4 FSR and transfer it to the host in packets whereas the host

RFduino was programmed to collect the data which was sent from the device to the

host to display as well as store it on the computer to which it was connected. The

overall design of the Care-Chair system is presented in Figure 3.5. The sampling rate

of data from each sensor was 10 Hz.
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Figure 3.5. Overall Care-Chair system design
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4. ACTIVITY SELECTION AND DATA COLLECTION

After the proper setup of the system (Care-Chair) the major challenge was

to decide the list of activities which needs to be classified. The list must contain

only those activities which are generally performed by the occupant during sitting

position. Since only the backrest of the chair was used rather than the whole chair,

so the activities must be something in which the backrest is usually involved. The

main purpose of Care-Chair is to facilitate elderly population, patients at home or

hospitals and people involved in more sedentary jobs like computer professionals and

office workers. Considering all these factors, a list of 18 activities which a Care-Chair

occupant can perform and which can reflect subtle but important information about

their health was created. This list includes following activities: 1.sitting still, 2. nap-

ping, 3. looking back left, 4. looking back right, 5. nodding head side-to-side, 6.

nodding head up-down, 7. Waiving hand, 8. Talking, 9. Sneezing, 10. Coughing,

11. Drinking, 12. Eating, 13. Hiccups, 14. Crying, 15. Laughing, 16. Shouting, 17.

Yawning and 18. Yelling. Further all these activities were categorized into following

sub-groups: Static activities: napping, sitting still Movement based activities: look-

ing back left, looking back right, nodding head side-to-side, nodding head up-down,

waiving hand User functional activities: talking, sneezing, coughing, drinking, eating,

hiccups Emotion based activities: crying, laughing, shouting, yawning, yelling

The data for all the selected activities was collected from 5 motivated users.

Each users were asked to perform all the activities separately. The minimum time

period set for each activities was 2 minute. But few of the activities like coughing,

sneezing, crying, hiccups, yelling, laughing, shouting and yawning were difficult to

emulate for longer period of time. So the users were asked to perform as long they

are feeling comfortable in doing so. All these difficult activities were actually painful
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to emulate unless it is occurring naturally. But the dedication of all the users towards

the research work and their commitment towards science was really appreciable. The

users tried to perform all these activities as naturally as they can. During emulating

the activities like coughing, sneezing and yawning it was observed that eventually they

end up getting it naturally. Before emulating the laughing activity they were shown

their favorite comedy show or reminded them some funny moments so that the laugh

can come naturally. For shouting activity, the users were told to argue aggressively

and loudly with someone over any controversial topic. Yelling was performed by

repeatedly and loudly calling someone for help. The difference between shouting and

yelling was that during shouting there was a sudden burst of air coming out from the

inside while yelling is the activity where there is a prolonged release of air pressure and

stretching the duration of word pronunciation. All these practices and precautions

were considered for these difficult activities to ensure the closeness to neutrality.

Other usual and easy to emulate activities like talking, sitting still, napping,

looking back left, looking back right, nodding head side-to-side, nodding head up-

down, waiving hand, drinking and eating were comfortably emulated by all the users.

The talking activity is just like a general talk to someone with usual expressions and

hand movements. Sitting still is sitting on the chair without any movement as if the

user is silently listening or watching something and his back is touching the backrest.

Napping is the complete relaxing position where users let their whole upper body

weight including head onto the backrest of the chair. It was observed that during this

activity the lower 2 pressure sensors (A1 and A4 as shown in Figure 3.1) were either

not or very slightly in contact with the body of the user. During looking back right

activity, user was asked to turn bit right in the sitting position and look back as if he

is trying to see something placed diagonally at right-back. Similarly, during looking

back left activity, user was trying to look back towards his left-back diagonal. In

nodding head side-to-side activity the user simply moves his head side-by-side similar
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to saying no gesture. In just opposite context of saying yes the users moved their

head up and down during the activity of nodding head up-down. Waiving hand is the

activity where users have to waive their both hand by lifting it above their head as if

they are trying to get attention from someone locating far from them. For performing

the eating activity the users were given sandwiches and bag of chips and they have

to eat it in their usual style. For drinking activity, a bottle of water was served to

the users. All of these sedentary activities were mostly practiced by elderly persons

or patients in hospitals or people involved in more sedentary jobs and keeping that

in mind, the users tried their best to perform them as naturally as they can. All the

activities performed by the users were video recorded with the timestamp in order to

verify the collected data in case of any abnormality observed. The video recording

was done only after the consent of the users.

A total of 78,333 data points were collected from the 5 users after performing

all the above mentioned 18 activities. Each data points consists of 4 timestamped

pressure sensor data value with ground truth data. The raw pressure data for each

activity is shown in the Figures 4.1 - 4.18.

Figure 4.1. Napping raw pressure data Figure 4.2. Sitting still raw pressure data
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Figure 4.3. Looking back-left raw
pressure data

Figure 4.4. Looking back right raw
pressure data

Figure 4.5. Nodding head up-down raw
pressure data

Figure 4.6. Nodding head side raw
pressure data

Figure 4.7. Talking raw pressure data Figure 4.8. Waiving hand raw pressure
data
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Figure 4.9. Coughing raw pressure data Figure 4.10. Sneezing raw pressure data

Figure 4.11. Drinking raw pressure data Figure 4.12. Eating raw pressure data

Figure 4.13. Hiccups raw pressure data Figure 4.14. Crying raw pressure data
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Figure 4.15. Laughing raw pressure data Figure 4.16. Shouting raw pressure data

Figure 4.17. Yelling raw pressure data Figure 4.18. Yawning raw pressure data
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5. FEATURE SELECTION AND ACTIVITY CLASSIFICATION

Feature selection is the first important step in machine learning based classi-

fication approach as it has a major contribution in creating an accurate predictive

model. Basically machine learning classification is a method to estimate the func-

tional relationship between a set of input vectors X = x1, x2, x3 . . . xN and its

corresponding output Y based on their knowledge of the previous data points Xi, Yi

where i = 1 . . . N and Xi . . . N are vectors of reals and Yi . . . N are real numbers.

It is not always necessary to use all the available features as input to estimate the

output efficiently and accurately. Even a subset of those features can be sufficient

to determine the output. So it is extremely important to notice that the subset of

irrelevant features can lead the process to become computationally very expensive

and as well as to overfitting problem. Consider a process whose computational time

is O(n3) for a single prediction where n is the number of features and n<N . Hence

adding even a single irrelevant feature for large number of predictions can drastically

increase the computational time. Overfitting is the selection of any feature which

cannot play any significant role in training a model and often leads to poor predictive

performance. Consider a face detection system which detects human faces in a given

picture using the pixels and other features of the image. Assuming the name and

height of the persons used as features to define the relationship to human face can

lead the system to more complex model and results erroneous predictions. Addition-

ally, leaving or ignoring certain features which can add value to the prediction models

also affects the system by giving poor classification results.

The Care-Chair system uses mean and variance of both the time domain as

well as frequency domain of the original signal from a single sensor with Fast-Fourier

Transformation (FFT). Hence with 4 features from a single sensor, there are total
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of 16 features were used for training and prediction process. These features were

calculated using the data samples collected over the sliding window of 3 seconds (30

samples from each individual pressure sensors) and with 50% overlapping. This size

of window for feature selection was well tested before taking into the consideration.

After the feature selection task, the major next important challenge was to

determine the machine learning classifiers which can efficiently and accurately clas-

sify the activities given the set of features input. In order to find the appropriate

machine learning classifier the performance of 13 machine learning classifiers were

evaluated exhaustively for all the 18 activities. These are following machine learning

classifiers evaluated: (1) AdaBoost, (2) Gradient Boosting Tress, (3) Bernoulli Nave

Bayes, (4) Gaussian Nave Bayes, (5) Multinomial Nave Bayes, (6) Decision Tree, (7)

Random Forest, (8) Extremely Randomized Trees, (9) Linear Discriminant Analysis,

(10) Quadratic Discriminant Analysis, (11) Stochastic Gradient Descent, (12) Sup-

port Vector Machine and (13) K-Nearest Neighbor. All the classifiers had different

execution timings as well as classification accuracy.

5.1. CLASSIFICATION PERFORMANCE

The confusion matrix generated after the classification of 18 activities using

each classifiers (except ) is shown in the Figures 5.1 - 5.12. The accuracy and execution

time for each classifier is mentioned in the Table 5.1.

It can be seen from the Table 5.1 as well as in the Figure 5.13 that 8 out of

13 classifiers has not even reached upto 50% of accuracy. The rest of the classifiers

with better accuracy percentage are K-Nearest Neighbor (68.44%) and Decision Tree

Classifier (74.52%) which are less than 80% accuracy whereas the classifiers with more

than 80% accuracy are Gradient Boosting Tress (83.01%), Random Forest (85.72%)

and Extremely Randomized Trees (86.22%). As an obvious fact that the selection

of the classifiers should be from the top performers, the other parameters which was
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Table 5.1. List of classifiers with their classification accuracy and execution timings

SNo Classifiers Accuracy
(%)

Training Time (in Sec)

1. Stochastic Gradient Descent 6.561345 3.242098

2. Support Vector Machine 7.657026 466.962

3. Gaussian Nave Bayes 9.255956 1.774822

4. Multinomial Nave Bayes 15.73449 2.446841

5. Bernoulli Nave Bayes 16.40336 1.777273

6. AdaBoost Classifier 26.43649 159.2569

7. Linear Discriminant Analysis 29.62798 2.642385

8. Quadratic Discriminant Analysis 48.06345 2.784103

9. K-Nearest Neighbor 68.44821 3.080137

10. Decision Tree Classifier 74.52542 4.18028

11. Gradient Boosting Tress 83.01057 1873.449

12. Random Forest 85.7243 22.91507

13. Extremely Randomized Trees 86.22754 2.837102

included was the time elapsed to train the model. It can be observed from the Table

5.1 and Figure 5.14 that among the execution time of the good performers i.e Gra-

dient Boosting Tress (1873.449 sec), Random Forest (22.91507 sec) and Extremely

Randomized Trees (2.837102 sec), Extremely Randomized Trees has given the best

performance with highest accuracy and lowest training time. Hence Extremely Ran-

domized Tree classifier is the best classifier for the Care-Chair.

5.2. PERFORMANCE EVALUATION OF EXTREMELY RANDOMIZED
TREES

Due to the best performance in terms of highest classification accuracy and

lowest execution time, the Extremely Randomized Tree is considered as most appro-

priate activity classifier for Care-Chair. The selected activities were very fine grained

activities and few of them were so closely related to each other that it was difficult

for any classifier to distinguish them. Furthermore, this classification experiment was

done with cross-user data. It means that the learning of the system was done with
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Figure 5.1. Confusion matrix of
classification performance by AdaBoost

Figure 5.2. Confusion matrix of
classification performance by BernoulliNB

Figure 5.3. Confusion matrix of
classification performance by Decision

Tree Classifier

Figure 5.4. Confusion matrix of
classification performance by GaussianNB

Classifier

the data of some other user and then another user data was used for the classification

test. It was not an easy task to classify such fine grained activities from different users

because different person perform these activities in different style and different body

movement. As shown in Figure 5.15, the confusion matrix generated for Extremely

Randomized Tree, the y-axis represents the actual labels or ground truth labels of
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Figure 5.5. Confusion matrix of
classification performance by Gradient

Boosting Classifier

Figure 5.6. Confusion matrix of
classification performance by KNeighbors

Classifier

Figure 5.7. Confusion matrix of
classification performance by

MultinomiNB Classifier

Figure 5.8. Confusion matrix of
classification performance by Linear

Discriminant Classifier

the all the 18 activities and the x-axis represents the predicted activities by the clas-

sifier. The thick density of color over the diagonal represents the accuracy of the

classification. The higher the density of the color for a particular activity, higher is

the accuracy of classification. It can be observed by the Figure 5.16 that most of the

activities have higher classification accuracy. It is interesting to note that few of the

activities which were misclassified as some other activities were contextually similar.



www.manaraa.com

26

Figure 5.9. Confusion matrix of
classification performance by Stochastic

Gradient Classifier

Figure 5.10. Confusion matrix of
classification performance by Quadratic

Discriminant Classifier

Figure 5.11. Confusion matrix of
classification performance by Support

Vector Machines Classifier

Figure 5.12. Confusion matrix of
classification performance by Random

Forest Classifier

For example eating was misclassified as drinking, talking and yelling were misclassi-

fied as shouting, sneezing was misclassified as coughing, sitting still was misclassified

as napping, nodding head up-down was misclassified as nodding head side.
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Figure 5.13. Classification accuracy of 13 machine learning classifiers

Figure 5.14. Execution timing of 13 classifiers
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Figure 5.15. Confusion matrix of classification performance by Extremely
Randomized

Figure 5.16. Classification Accuracy of individual activities with Extremely
Randomized Trees classifier
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6. BREATHING RATE DETECTION

Respiration is a biological process which involves periodic sequence of inhales

and exhales. Inhaling expands the thorax region of the body due to the air intake

which subsequently contracts during exhaling. The frequency of expansion and con-

traction during breathing can tell the breathing rate of a person. There are devices

like Respiratory Belt Transducer which contains a piezo electric device and Respira-

tion monitor belt which uses gas pressure sensors to measure the breathing rate of a

person utilizing the frequency of the contraction and expansion of their thorax region

during respiration. But these are devices which needs to be carried all the time tied

closely to the persons body. Very few people who needs to know their breathing rate

every second or minute can tolerate it on their body all the time. There is a need to

frame a device which can opportunistically measure the breathing rate of the users

without any human intervention.

Motivated by the work of Griffiths et al. [10], the Care-Chair was designed

to calculate the breathing rate of the user in certain situations apart from activity

detection. The pressure sensors mounted on the backrest rest of the Care-Chair can

measure the breathing rate of the occupant. The accuracy of the calculated breathing

rate depends on the absence of noise in the data. The noise here means the data

generated or retrieved due to the change of force experienced by the pressure sensors

resulting from the movements other than breathing.

The Care-Chair system was used to calculate the breathing rate of the occu-

pants. The accuracy and the usability of the system to determine the breathing rate

was verified using 19 users (9 male and 10 female) data. The users were asked to

breathe in 3 different ways, each for 4-5 minutes. First was the slow breathing in
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which the users were asked to breathe comparatively slower than the normal breath-

ing. Second is the normal breathing during which they have to do usual breathing.

The third type of breathing was the fast breathing which was comparatively faster

than the normal breathing. The raw data collected for fast, normal and slow breath-

ing is shown in Figures 6-1, 6-2 and 6-3 respectively. An android application was used

for collecting the ground truth data for breathing. The application was basically a

user interface with a whole mobile phone screen space available for tapping. The user

has to tap on the screen of the mobile phone with their finger when they complete

a cycle of breathing, which is one inhale and one exhale. The tapping on the screen

actually stores the time of the tapping. At the same time, the pressure data read-

ings from all the four square force sensing resistors are collected in a computer. The

sampling frequency of data was 10 Hz.

Figure 6.1. Fast Breathing Raw Data

During the experiment with 19 users few interesting outcomes for expansion

and contraction were observed during breathing. People with different body struc-

ture, volume, width and height interact with the sensors on the backrest differently.
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Figure 6.2. Normal Breathing Raw Data

Figure 6.3. Slow Breathing Raw Data

Additionally, their breathing pattern and behavior exhibits different body movements.

In the experiment it has been observed that the upper two sensors are more sensitive

to breathing in comparison to the lower sensors. Depending on how the back of a
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person was in contact with the sensors, it was determined whether the expansion or

contraction will exert force on the sensors. If a persons back was perfectly touching

the upper two sensors in a normal sitting situation then inhaling was releasing the

force from the sensors as the body raised upwards due to volume increase. Again

the body will retain back the position on the sensors while exhaling. But the reverse

will happen when the sensors are not in well contact with the body in the normal

sitting situation. These observation does not affect the breathing rate calculation as

it is based on the pressure gradient, not the exact pressure readings. Care-Chair will

work efficiently even if the occupant is in contact with at-least one sensor.

6.1. BREATHING RATE CALCULATION

Each user dataset consists of four columns of pressure readings, each from 4

square force sensing resistors separately. The data was collected with the sampling

frequency of 10 Hz. Each sensor data is divided into multiple files of 30 seconds data.

Then autocorrelation was applied on the each of sensor data in the files and calculated

the breathing rate separately. Autocorrelation is basically a signal processing tool

where a signal correlates with itself by overlaying its own different timed lagged

signals upon the original signal to find a pattern. The delay or lag was varied from

0.5 seconds (i.e. 5 samples) to 30 seconds (i.e. 300 samples). Autocorrelation was

calculated with each of these lagged signals (with the original signal). The lag-length

giving the first peak was selected to calculate the time period of the signal when

it gets the first peak. The inverse of this time period was then the breathing rate

calculated for that segment. The autocorrelation graph generated for fast, normal

and slow breathing is shown in Figures 6-4, 6-5 and 6-6 respectively. The y-axis of

the graph plots represent different lag-lengths and from there a specific lag-length is

selected from the point where the first peak is found.
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Assume, lag − time = τ ; lag − length = α; sampling − rate = γ

So, τ =
α

γ

Breathing rate per minute = 60 ∗ 1

τ

As an example, consider the first peak of the autocorrelation determined from

fast breathing (Figure 6.1) which has got the first peak at lag-value of 15 (calculated

using matlab) and the data was collected with a sampling rate of 10. Hence, α = 15

and γ = 10. So τ = 1.5 and hence the breathing rate is 60
τ

i.e 40.

The breathing rate calculated from each 30 seconds data file was averaged

to determine the breathing rate from each sensors separately. Once the separate

breathing rates were calculated from all the 4 sensors then again they were averaged to

calculate the final breathing rate. The ground truth breathing rate was calculated for

every 30 seconds and then averaged to determine the overall ground truth breathing

rate. Figures 6-7, 6-8 and 6-9 is showing the slow, normal and fast breathing rates of

19 users (10 female and 9 males) with their ground truth.

6.2. MOBILE APPLICATION

Using the above principle, an iphone application was created which can de-

termine the real-time breathing rate of the occupant. The readings of pressure data

from the rfduino was transferred to the mobile application via Bluetooth Low Energy.

The application internally does all the required data processing as discussed above.

The application consists of GUI (Graphics user interface) (Figure 6.10) showing the

image of the chair with 4 square shapes drawn on its backrest indicating 4 sensors.

They represents the sensors in the same sequence as in reality. The color of the square
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Figure 6.4. Autocorrelation for fast breathing

boxes are initially white when no force is applied. Each sensor displays a specific color

during the change in their resistance. The intensity of the force applied on the sensors

can be seen with the area covered by the colors. Additionally, the raw data from each

sensor is displayed in numbers as well as using line graph in their corresponding color.

Control mechanisms are provided to control the display of each line graph as per the

user requirement. Finally the application displays the breathing rate of the occupant

at the bottom of the screen. The application is compatible with both mobile phone

as well as iPad.
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Figure 6.5. Autocorrelation for normal breathing

Figure 6.6. Autocorrelation for slow breathing
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Figure 6.7. Fast breathing rates of 19 users (10 female and 9 males) and their
comparisons with ground truth breathing rates collected during the experiment

Figure 6.8. Normal breathing rates of 19 users (10 female and 9 males) and their
comparisons with ground truth breathing rates collected during the experiment
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Figure 6.9. Slow breathing rates of 19 users (10 female and 9 males) and their
comparisons with ground truth breathing rates collected during the experiment

Figure 6.10. iOS Mobile application for breathing rate detection in real time. a.
Application calculating the breathing rate of the user sitting on the chair b. Screen

shot of the application during breathing rate detection
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7. WHOLE DAY STUDY ANALYSIS

As the part of the performance evaluation for the use of Care-Chair in the

wild (uncontrolled environment), 1 user was asked to sit on Care-Chair during their

working hours for whole day. He was instructed to follow his daily natural schedule

without paying any attention to the evaluation process. A video camera was placed

near the chair covering enough space to avoid the chair going out the coverage area.

The timestamped video recording was done to collect the ground truth data for

verifying the classifiers output. User was free to leave the chair unoccupied for some

time as per his need and requirement. Snacks and lunch was provided in the beginning

of the day so that they can have them according to their convenience. In addition to

that they had the facility of coffee machine and cold drinks available in the room to

serve themselves whenever they are needed.

The data was collected for the whole day (almost 8 hours) and then Extremely

Randomized Tree classifier was applied over the collected data which led to interesting

results. The Figure 7.1 shows the activities classified by ERT performed by the user

at different timestamps. In the whole day evaluation one activity called nobody

sitting was included in the activity list in order to identify the moment when the

user leaves the chair for any reason. All the 19 activities are represented on y-axis

and their corresponding timestamp is represented on the x-axis. The activities on the

y-axis are represented in numbers and their corresponding activity is given the Table

7.1 provided below the figure. The sequence is basically starting from the group of

static activities, following movement activities, then functional activities and lastly

emotional activities. The purpose to follow this sequence is to distinguish and better

visualize the least practiced activity from frequently occurring activities. The high

density near to bottom of the graph shows the more natural activities has occurred
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regularly. The activities with similar body movements like napping and sitting still;

coughing, laughing and swinging on the chair backrest were difficult to differentiate.

In an interesting observation it has been found that few activities like typing, lifting

hands till face, finger combing which are not included in the activity list are classified

as eating or drinking. The uniformly absence of peaks in the graph from time 14:39

to 15:27 shows the chair was unoccupied during that interval. When this was cross

verified with the user as well as the recorded video, it was found the user went to

attend the class during that period of time. The similar level of peaks all through

the graph displays the absence of the occupant. The absence of comparatively higher

density of lines at the upper level of the graph signifies less emotional activities like

shouting, weeping and yelling. The presence of coughing activity during most of time

is actually due to the usual movement of the user which are misclassified as coughing.

The overall classification result when compared to the ground truth data was good

and convincing.

Figure 7.1. Activity classification using Extremely Randomized Tress classifier on
the data collected during the 8 hours of study
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Table 7.1. Reference for the activities for the numbers given the Figure 7.1

Sequence
Number

Activity

0 Nobody Sitting

1 Napping

2 Sitting Still

3 Looking back left

4 Looking back right

5 Nodding head side-to-side

6 Nodding head up-down

7 Waving hand

8 Talking

9 Sneezing

10 Coughing

11 Drinking

12 Eating

13 Hiccups

14 Crying

15 Laughing

16 Shouting

17 Yawning

18 Yelling
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8. CONCLUSION

The purpose of Care-Chair system design is to help the users, especially the

elderly people, patients in home and hospitals and the people involve in more seden-

tary activities to keep track of their daily activities. It can opportunistically collect

data from the occupant without any persons intervention and capable of detecting

and classifying 18 different fine grained activities. The system was tested with the

data of 5 users and successfully classified all the 18 activities with 86.22% of accu-

racy. The daily activity knowledge of a person can reveal very subtle and important

information about the health condition. It reduces the overhead of wearing certain

wearable health sensor which can make people uncomfortable and unfocused during

their daily important activities. The Care-Chair System design is quite affordable

and user friendly. It consists of just 4 FSR (Force Sensitive Resistor) mounted at the

backrest of a chair which are connected with RFduino through wires. All the commu-

nication and data collection can be done via Bluetooth and Gazell wireless protocol.

This makes the system looks very simple and natural. Care-Chair is also capable

of measuring the breathing rate of the occupant with great accuracy. The breath-

ing rates of 19 users (10 female and 9 male) calculated using Care-Chair produces

nearly precise results close to the ground truth. Finally the system was evaluated

during a day long study in uncontrolled environment with a single user. With minor

misclassification due to lack of certain unspecified activities in training list and few

inter-contextual misclassification like coughing as sneezing or talking as shouting, the

overall classification was decent. But it cannot be denied that the system can be

improved by shifting from supervised machine learning classifier to semi-supervised

machine learning classifier which the future scope of Care-Chair.
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textile pressure sensor for sitting posture classification,” Sensors Journal, IEEE,
vol. 10, no. 8, pp. 1391–1398, 2010.

[17] S. Mota and R. W. Picard, “Automated posture analysis for detecting learner’s
interest level,” in Computer Vision and Pattern Recognition Workshop, 2003.
CVPRW’03. Conference on, vol. 5. IEEE, 2003, pp. 49–49.

[18] B. Mutlu, A. Krause, J. Forlizzi, C. Guestrin, and J. Hodgins, “Robust, low-cost,
non-intrusive sensing and recognition of seated postures,” in Proceedings of the
20th annual ACM symposium on User interface software and technology. ACM,
2007, pp. 149–158.

[19] O. Postolache, P. Girao, G. Postolache, and M. Pereira, “Vital signs monitoring
system based on emfi sensors and wavelet analysis,” in Instrumentation and Mea-
surement Technology Conference Proceedings, 2007. IMTC 2007. IEEE. IEEE,
2007, pp. 1–4.

[20] A. Sasou, “Head-orientation-estimation-integrated speech recognition for the
smart-chair,” in Universal Communication, 2008. ISUC’08. Second International
Symposium on. IEEE, 2008, pp. 482–489.

[21] A. Sasou and H. Kojima, “Noise robust speech recognition for voice driven
wheelchair,” in INTERSPEECH, 2007, pp. 250–253.

[22] H. Z. Tan, L. Slivovsky, A. Pentland et al., “A sensing chair using pressure
distribution sensors,” Mechatronics, IEEE/ASME Transactions on, vol. 6, no. 3,
pp. 261–268, 2001.



www.manaraa.com

44

[23] B. Tessendorf, B. Arnrich, J. Schumm, C. Setz, and G. Tröster, “Unsupervised
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